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What is the appropriate description level for
synaptic plasticity?
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T
he hypothesis that learning
memory and some aspects of
development are mechanistically
implemented by synaptic plastic-

ity has gained significant experimental
support (1, 2). At the cellular and molec-
ular level synaptic plasticity is a very
complex phenomenon, involving hundreds
of molecular species, depending on the
structure of dendrites and on ion channel
concentrations. If we are to understand
how high-level processes arise from syn-
aptic plasticity, and not simply that they
arise from synaptic plasticity, we must
know how to best characterize plasticity
theoretically. Such a characterization
should account for key experimental re-
sults, yet at the same time it should be as
simple as possible so that we can use it
to explain how plasticity can lead to
learning and memory. The article by
Gjorgjieva et al. (3) in PNAS argues that
a sufficient model of synaptic plasticity can
depend only on spike pairs and triplets
and that more-complex biophysical and
molecular processes might not be needed.
It also shows a correspondence between
this triplet-based rule and the well-known
phenomenological Bienenstock Copper
Munro (BCM) learning rule (4).
Many of the early theories of synaptic

plasticity were not formulated on the basis
of low-level experimental evidence. In-
stead, they were motivated by the con-
sequences of plasticity observed at a
higher level, for example receptive field
plasticity in visual cortex. To account
for such high-level plasticity, theorists
postulated phenomenological low-level
mechanisms that can account for such
higher-level phenomena. In the mid-1970s
von der Malsburg (5) proposed rate-based
network models that included synaptic
plasticity and competition between cells to
account for the formation of orientation
selectivity and ocular dominance maps in
visual cortex. The plasticity model he
used was very simple: synaptic potentia-
tion that is proportional to the product of
presynaptic and postsynaptic activity vari-
ables, coupled with a normalization of the
total synaptic weight. Later work has
shown the limitations of this plasticity
model (6). The BCM model (4) was also
formulated to explain receptive field plas-
ticity in visual cortex, and like other rate-
based phenomenological models, is for-
mulated in terms of abstract pre- and
postsynaptic activity variables. The BCM

theory (Fig. 1A) is based on two principles,
formulated by two equations. First, the
plasticity equation:

dwi

dt
¼ xiϕðy; θmÞ [1]

states that the change of the synaptic ef-
ficacy (wi) in synapse i is a product of
the presynaptic activity (xi) and a non-
linear function (ϕ) of the postsynaptic ac-
tivity (y). The ϕ function is negative at
low values of y and becomes positive when
y exceeds the modification threshold (θm).
The second principle, metaplasticity (7),

which states the modification threshold

(θm) is modifiable, serving as a negative
feedback, is implemented in the equation:

θm ¼ �
y1þμ

�
t; [2]

where the angled brackets denote a sliding
temporal average, and μ > 0 ensures sta-
bility (4). In Fig. 1A we show the form
of the ϕ function for two different levels of
the modification threshold.
The BCM theory can indeed account for

the formation of orientation selectivity
and ocular dominance of cortical neurons
in natural image environments and for
various different deprivation experiments
(6). Furthermore, the assumptions of
BCM have influenced experimental stud-
ies of synaptic plasticity (8). However,
it is difficult to tightly link BCM to physi-
ological and biochemical experiments,
owing to the abstract nature of the varia-
bles BCM uses.
In the late 1990s several experimental

studies indicated that the precise timing of
pre- and postsynaptic spikes have significant
influence on the sign and magnitude of
synaptic plasticity (9, 10) (Fig. 1B). Accord-
ing to this experimental observation, called
spike timing-dependent plasticity (STDP),
when a presynaptic spike comes before a
postsynaptic spike [Δt = (tpost − tpre) > 0],
long-term potentiation (LTP) is induced,
and if the order is reversed (Δt= <0), long-
term depression (LTD) is induced. Such
results cannot be accounted for by rate-
based theories, which are designed to be
independent of single spike times.
Because of the complexity of the mech-

anisms inducing synaptic plasticity, it was
tempting to assume that all of synaptic
plasticity can be captured by this simple
curve and that plasticity that is induced by
complex pre- and postsynaptic spike trains
can be simply explained by the superposi-
tion of the plasticity induced by all spike
pairs (11, 12). Such a theory does not pro-
vide a mechanistic description of synaptic
plasticity; instead it postulates that the
curve in Fig. 1B (Left) can be used to
summarize all that needs to be known of
plasticity. This curve is also called a two-
point kernel. Kempter et al. (1999) (11)
analyzed the correspondence between

Fig. 1. Models of synaptic plasticity. (A) In BCM,
a rate-based model of synaptic plasticity, the sign
and magnitude of plasticity is determined by
postsynaptic activity (Left). If activity is lower than
θm, LTD is induced; otherwise, LTP is induced. The
modification threshold changes as a function of
the history of postsynaptic activity. BCM can ac-
count for receptive field plasticity in visual cortex
(Right). (B) Pair-based kernel model of synaptic
plasticity. LTD (red) is induced if the postsynaptic
spike comes before the presynaptic spike; other-
wise, LTP (blue) is induced. This rule is consistent
with a rate-based rule that is linear in postsynaptic
activity. (C) In a triplet-based theory, pair-based
LTD plus triplet-based LTD can together account
for various experimental results and for the rate-
based BCM model. (D) CaDP, a biophysical model
of synaptic plasticity, assumes that the level of
postsynaptic calcium determines synaptic plastic-
ity. Moderate calcium levels produce LTD, higher
levels LTP. It can account for rate-based plasticity
induction protocols and STDP; however, STDP has
a second LTD region.
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STDP and rate-based plasticity theories. By
using a simple model neuron and assuming
that presynatic spikes are generated by a
Poisson process with a given rate, they were
able to reduce a theory based on linear
superposition of the STDP curves to a rate-
based theory. Their analysis shows that
the STDP rule corresponds to a rate-based
rule that is linearly dependent on the post-
synaptic firing rate (Fig. 1B, Right) and on
the covariance between the different inputs.
These results also show that pair-based
STDP does not correspond to the BCM
rule (13). Further inspection of pair-based
STDP shows that it cannot account for
many experimental observations (14). For
example, experimentally (9) spike timing-
dependent LTP was only induced if spike
pairs were delivered at a frequency above
10 Hz, a result that cannot be explained by
pair-based kernel theory (9, 14).
Motivated by the failure of the pair-

based kernel model, Pfister and Gerstner
(2006) (13) developed a kernel-based
model that took into account both pairs
and triplets. In other words, plasticity can
be summarized by two- and three-point
kernels. The triplet-based theory could
account for more experimental results and
in particular the frequency dependence of
STDP (9, 15). Indeed, pair-based LTD
and triplet-based LTP were sufficient to
account for experimental observations in
visual cortex (Fig. 1C).
The article by Gjorgjieva et al. (3) fur-

ther analyzes the triplet-based model by
adopting the techniques used previously
for pair-based STDP (11). The article
shows that triplet-based STDP reduces to
a BCM-like rule and additional temporal
correlation-dependent components. To
obtain metaplasticity the authors postu-
lated an additional mechanism whereby
the magnitude of the pair-based STDP is

an increasing function of the temporal
average of postsynaptic activity. Conse-
quently, the triplet-based rule has many of
the same features as BCM, such as gen-
erating selective receptive fields when
presented with linearly independent input
vectors. The additional components to the
learning rule mean that it can also ac-
complish tasks that BCM cannot; for ex-
ample, it can separate between patterns
that are separable only because of their
correlational structure but would seem
identical on the basis of firing rates alone.
These results indicate that a triplet-based
theory of synaptic plasticity may be suffi-
cient, because it can account both for cell-
based experimental protocols and for
higher-level features.
However, various experimental results

have not been accounted for by the triplet-
based theory. For example, the rule de-
signed to account for the frequency
dependence of STDP (15, 16) cannot at
the same time account for plasticity pro-
tocols induced directly by spike triplets
and quadruplets in a different synapse
within a similar neocortical preparation
(16). Further, whereas low-frequency pairs
do not cause LTP when the presynaptic
stimulus is delivered by activating a single
presynaptic cell, they might if delivered
extracellularlly, thus activating multiple
synapses (15) because in terms of single
synapse kernel-based theories, these two
conditions are identical.
An alternative to kernel-based theories

are mechanistic theories in which plasticity
induced by different induction protocols
arises from a common mechanism.
Mechanistic models fall into two catego-
ries: biophysical and phenomenological
(17, 18). Phenomenological models assume
an underlying mechanism that is not ex-
plicitly mapped onto biophysical processes,

in contrast to biophysical models, which
assume mechanisms based on realistic as-
sumptions; often the boundary between
these categories is not sharp.
Biophysical models of synaptic plasticity

make specific testable assumptions about
the biophysical mechanisms resulting in
changes to synaptic efficacies. For exam-
ple, it is well known that calcium ions
flowing into the postsynaptic spine
through NMDA receptors play a major
role in synaptic plasticity in many systems.
Additionally, experimental observations
and theoretical ideas have led to the no-
tion that low levels of calcium elevation
lead to LTD, whereas higher levels lead to
LTP. Hence, such assumptions have gone
into several calcium-dependent plasticity
(CaDP) models of synaptic plasticity (Fig.
1D) (14, 19). These assumptions can ac-
count for various induction protocols, in-
cluding STDP, but surprisingly STDP in
such models has a second LTD region at
Δt > 0. A second LTD region exists in
hippocampal slices (14) but probably not in
neocortical slices. The failure of CaDP to
account for neocortical plasticity might be
traced back to its assumptions, because in
neocortex spike timing-dependent LTD
does not depend on postsynaptic NMDA
receptors. Alternative theories with two
coincidence detectors might fit the data
better (20).
The appropriate description level for

synaptic plasticity is still not known and
might depend on what exactly we are
trying to understand. More research is
required to test whether kernel based
models are sufficient for explaining higher-
order phenomena, and how they arise from
the cellular biophysics, or whether bio-
physical models must be used instead.
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